I. For each of the following statements, write "I" for ionic, "C" for covalent and "M" for metallic.  $\_{}^{C}$  electrons are shared M electrons delocalized I electrons are transferred I crystal lattice M luster C nonconductors in the solid, molten, and dissolved state M malleable and ductile I high melting and boiling points C volatile liquids and gases C weaker forces between atoms I hard—difficult to crush II. Fill in the blanks. When an atom loses an electron, it becomes a(n) \_\_\_\_\_ with a positive charge. When an atom gains an electron, it becomes a(n) anion \_\_\_\_ with a \_\_\_\_ regative \_\_\_ charge. In a polar covalent bond, the electrons are shared <u>unequally</u>. In a nonpolar covalent bond, the electrons are shared \_\_\_\_equally A molecule consisting of only two atoms has a \_\_\_\_\_ shape. A molecule with two \_\_\_\_ atoms bonded to the central atom with \_\_\_\_ zero \_\_\_ unshared pair(s) of electrons has a linear shape. A molecule with \_\_\_\_\_ atoms bonded to the central atom with \_\_\_\_\_\_ unshared pair(s) of electrons has a trigonal planar shape. A molecule with \_\_\_\_\_ four \_\_\_\_ atoms bonded to the central atom with <u>zero</u> unshared pair(s) of electrons has a tetrahedral shape. A molecule with \_\_\_\_\_two \_\_\_\_ atoms bonded to the central atom with \_\_\_\_two \_\_\_\_ unshared pair(s) of electrons has a bent shape. A molecule with \_\_\_\_\_ atoms bonded

Name KEY

Review Sheet: Unit 5

pyramidal shape.

to the central atom with \_\_\_\_\_ one \_\_\_ unshared pair(s) of electrons has a trigonal

| While     | bonding is the for intermolecular forces |                           |                          |                | TWEEN molecules.                       |
|-----------|------------------------------------------|---------------------------|--------------------------|----------------|----------------------------------------|
| called    | orce present in all                      | don-dispersion forces     |                          | The fo         | rce of attraction                      |
|           | •                                        |                           |                          | •              | f another molecule                     |
| hydro     | dipole-dipole gen is called              | I ne .<br>hvdrogen bondin | speciai type             | this occurs    | e involving<br>when hydrogen is        |
|           | d to                                     |                           |                          |                |                                        |
| III.      | What type of bond                        | d will form betw          | een the foll             | lowing pairs o | of atoms?                              |
| Na and F  |                                          | N and O                   |                          | I and I        |                                        |
|           | 4.0 - 0.9 = 3.1 ionic                    |                           | -3.0 = 0.5 ar covalent   |                | $2.5 - 2.5 = 0.0$ $nonpolar\ covalent$ |
| Fe and Cl |                                          | Br and I                  |                          |                | Ca and O                               |
|           | 3.0 - 1.8 = 1.2 polar covalent           |                           | -2.5 = 0.3 olar covalent |                | 3.5 - 1.0 = 2.5 <i>ionic</i>           |
| IV.       | Draw Electron Do                         | t Diagrams for t          | he following             | g elements.    |                                        |
| magne     | sium                                     | iodine                    | I                        | boron          |                                        |
|           | ·<br>Mg ·                                | · I :                     |                          | В .            |                                        |
| sulfur    |                                          | carbon                    | I                        | krypton        |                                        |
|           | <br>.s:                                  | ·ċ.                       |                          | :Kr:           |                                        |

## V. Draw Lewis Structures for the following molecules and polyatomic ions.

PCI<sub>3</sub>

CH<sub>4</sub>

CIO21-

$$\begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & - & \vdots \\ \vdots & \vdots & - & \vdots \end{bmatrix}^{1-}$$

NH<sub>2</sub>Cl

ONCI

$$O = N - Cl$$

OH1-

50<sub>3</sub><sup>2</sup>-

SO<sub>3</sub>

$$\begin{array}{c} \vdots \\ O = S - O \vdots \\ \vdots \\ O \vdots \\ \end{array}$$

 $C_2H_2$ 

IBr

$$H - C \equiv C - H$$

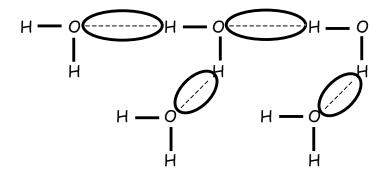
NO<sub>2</sub><sup>1-</sup>

## VI. Predict the shape each of the following molecules will form. (Hint: see previous page for Lewis Structures.)

| PCI <sub>3</sub> | trigonal pyramidal | CH <sub>4</sub>               | tetrahedral |
|------------------|--------------------|-------------------------------|-------------|
| NH₂Cl            | trigonal pyramidal | SiO <sub>2</sub>              | linear      |
| SO <sub>3</sub>  | trigonal planar    | C <sub>2</sub> H <sub>2</sub> | linear      |
| IBr              | linear             |                               |             |

## VII. Draw the Lewis Structure for $H_2O$ . Predict the bond type. Label any partially positive or negative ends. Determine whether a molecule of water is polar or nonpolar and explain your answer.

$$\delta$$
+ H - O:  $\delta$ - H - O:  $\theta$ -


The water molecule will have a bent shape because it has 2 atoms bonded to the central atom with 2 unshared pairs of electrons.

This will put the partially positive hydrogens on one end and the partially negative oxygen on the other, so the molecule is POLAR.

Draw the Lewis Structure for  $SiCl_4$ . Predict the bond type. Label any partially positive or negative ends. Determine whether a molecule of  $SiCl_4$  is polar or nonpolar and explain your answer.

The molecule will have a tetrahedral shape because it has 4 atoms bonded to the central atom with no unshared pairs of electrons. This will not allow for a positive and negative end, so the molecule is NONPOLAR.

## VIII. Circle the intermolecular forces in the following diagram.



**CHEMISTRY:** A Study of Matter © 2004, GPB