Name____KEY

:0:

<u>Molecular Geometry</u>

A molecule consisting of only two atoms has a <u>linear</u> shape. A molecule with <u>two</u> atoms bonded to the central atom with <u>zero</u> unshared pair(s) of electrons has a **linear** shape. A molecule with <u>three</u> atoms bonded to the central atom with <u>zero</u> unshared pair(s) of electrons has a **trigonal planar** shape. A molecule with <u>four</u> atoms bonded to the central atom with <u>zero</u> unshared pair(s) of electrons has a **tetrahedral** shape. A molecule with <u>two</u> atoms bonded to the central atom with <u>two</u> unshared pair(s) of electrons has a **bent** shape. A molecule with <u>three</u> atoms bonded to the central atom with <u>one</u> unshared pair(s) of electrons has a **trigonal pyramidal** shape.

Predicting Molecular Shapes

Draw each molecule and predict the shape each molecule will form. IBr CCl_4 \vdots

linear		tetrahedral	
	- Br:		: Cl - C - Cl: : Cl:
PCl ₃ trigonal pyramidal Cl	- P - Cl:	H ₂ S bent	H – S: H
C ₂ H ₂ <i>linear</i> H – C	≡ C – H	SO3 trigonal planar	: O = S - O:

NH2CI

trigonal pyramidal

Polarity in Molecules

Determine the type of bonds in each of these molecules using the "Table of Electronegativities." Then, determine whether each of these molecules will be polar or nonpolar. Explain your reasoning.

IBr	2.8 - 2.5 = 0.3 nonpolar – has nonpolar bonds	CCI ₄	3.0 - 2.5 = 0.5 nonpolar – has polar bonds, but can't be
PCl ₃	3.0-2.1=0.4 polar – has polar bonds and can be divided into + and – ends	H₂S	divided into $+$ and $-$ ends 2.5 - 2.1 = 0.4 polar $-$ has polar bonds and can be divided into $+$ and $-$ ends
C_2H_2	2.5 - 2.1 = 0.4 nonpolar – has polar bonds, but can't be divided into + and – ands	SO ₃	3.5-2.5 = 1.0 nonpolar – has polar bonds, but can't be divided into + and – ends
NH₂CI	3.0-2.1 = 0.9 $3.0-3.0 = 0.0polar – has polar bonds and can bedivided into + and – ends$		urraca mo - ana enas

Intermolecular Forces

While bonding is the force of attraction WITHIN molecules,

intermolecular forces are the forces of attraction BETWEEN molecules.

Circle these forces in the following diagram.

Define "Dipole-dipole Forces."

force of attraction between the positive end of one molecule and the negative end of another; this is the strongest intermolecular force

Define "Hydrogen Bonding."

occurs in molecules with H—F, H—O, and H—N bonds; positive charge on hydrogen is attracted to unshared pair of electrons on a neighboring molecule; strongest type of Dipole-dipole forces

Define "London-Dispersion Forces."

weakest intermolecular force that results from the constant motion of electrons; occurs in all molecules