I. Short Answer and Fill in the Blanks:
1.

Models are a familiar idea used to explain unfamiliar facts observed in nature while a \qquad is an explanation of observable facts and phenomena.
2. To remain valid, models and theories must:
a. explain known facts
b. make correct predictions
3. The existence of the atom was proposed by the Greek philosopher Democritus . The word "atom" comes from the Greek word "atomos" which means not to cut or indivisible.
4. \qquad was a Greek philosopher who rejected the idea of the atom.
5. \qquad was an English schoolmaster who explained the Law of Conservation of Mass, the Law of Definite Proportions, and the Law of Multiple Proportions using an atomic theory. His theory proposed that atoms:
a. are the building blocks of matter
b. are indivisible
c. of the same element are identical
d. of different elements are different
e. unite in small, whole-number ratios to form compounds
6. The discovery of the atom's nucleus can be credited to __Rutherford , whose gold -foil experiment provided experimental detail about the atom's structure. In his experiment, Rutherford aimed__alpha_ particles at a piece of gold foil. Most of the particles passed through the foil, but a few were_deflected , and some even bounced back (were reflected). He concluded that most of the atom is \qquad space positively . He also concluded that the atom has a dense,
\qquad charged core we call the nucleus.
7. The particles that make up the nucleus of the atom are called nucleons and are comprised of the \qquad and \qquad in an atom.
8. Atoms are \qquad because the number of \qquad charged protons equals the number of \qquad charged electrons.
9. Isotopes are atoms of an element that have different numbers of neutrons, and consequently, different atomic_masses.
10. The \qquad
\qquad of an atom is the sum of all the nucleons of an atom.
11. Rutherford's planetary model of the atom faced a major problem. Classical physics predicted that the electron, as it circled the nucleus, would lose energy so eventually the atom would collapse!
12. Bohr placed e^{-}in energy levels, assuming that the electron won't lose energy as long as it stays in the allowed level.
13. Bohr suggested that electrons can_absorb__ a quantum or photon of energy, and then jump to a higher_energy level. This is called the excited state. This is an unstable state, and the atom soon gives off the same amount of energy absorbed. Some of this energy is in the form of ___ visible light.
14. The science of studying visible light through the use of a spectroscope is called spectroscopy The spectral lines identify an element and are called the element's \qquad
\qquad spectrum.
15. The modern view of light is that it has a \qquad nature, behaving as both a \qquad and a stream of \qquad . It simply depends on the experiment!
16. Four \qquad . numbers \qquad are used to describe the location of an electron in an atom. They are n, l, m, and s, . The principal quantum number, _n_ represents the main energy level of the electron. The maximum number of electrons in this level is found using the formula: \qquad . The second quantum number \qquad describes the
\qquad shape.
17. In the electron distribution $1 s^{2}$, the "1" represents the \qquad
\qquad level, the "s" represents the \qquad and the "2" represents the number of electrons in the sublevel_.
18. \qquad Rule states that orbitals of equal energy are each occupied by
\qquad electron before any orbital is occupied by a \qquad electron.
19. The \qquad Exclusion Principle states that no two electrons in the
\qquad atom can have the \qquad set of four quantum
\qquad numbers
II. Charts and Problems: Show all work if applicable.

1. Complete the following table:

Hyphen Notation	Nuclear Symbol	Atomic Number	Mass Number	\# of Protons	\# of Electrons	\# of Neutrons
Carbon-12	${ }_{6}^{12} \mathrm{C}$	6	12	6	6	6
Potassium-40	${ }_{19}^{40} \mathrm{~K}$	19	40	19	19	21
Boron-11	${ }_{5}^{11} B$	5	11	5	5	6

2. The relative abundance of the isotopes of oxygen are:

Oxygen-16: 99.760\% Oxygen-17: 0.037\% Oxygen-18: 0.204\% Calculate the average atomic mass of oxygen:
$(0.99760)(16 u)+(0.00037)(17 u)+(0.00204)(18 u)=16.00 u$
3. In a bright-line spectrum, the wavelength of a particular line is $6.0 \times 10^{-7} \mathrm{~m}$. What is the frequency of this color of light?

$$
c=\lambda f \quad 3.0 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}=\left(6.0 \times 10^{-7} \mathrm{~m}\right) \times f \quad f=5.0 \times 10^{14} \mathrm{~Hz}
$$

4. The maximum number of electrons in a main energy level is calculated using the formula $2 n^{2}$. Therefore, the maximum number of electrons in the $5^{\text {th }}$ main energy level is: $2 n^{2}=2 \times 5^{2}=2 \times 25=50$
5. How many sublevels are present in the $4^{\text {th }}$ main energy level?

What are they? \qquad
s, p, d, f
6. The maximum number of electrons that can occupy an orbital is \qquad if they have \qquad
\qquad .
7. Do the electron distribution and the orbital notation for:

Li: $1 s^{2} 2 s^{l}$

O: $1 s^{2} 2 s^{2} 2 p^{4}$

CHEMISTRY: A Study of Matter

