Quiz: 6.1-6.6	(without stoichiometry)	(A)
---------------	-------------------------	-----

Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

 Energy that is associated with the position or composition of an object is called A) chemical energy B) thermal energy 				1)
C) potential energy		D) kinetic energy		
2) Energy that is association is called	ted with the relative posit	ions of electrons and nuclei ir	n atoms and molecules	2)
A) chemical energy		B) thermal energy		
C) potential energy		D) kinetic energy		
3) Energy that is associated	ted with the temperature	of an object is called		3)
A) thermal energy	ľ	B) kinetic energy		
C) potential energy	,	D) chemical energy		
4) Which of the following signs on q and w represent a system that is doing work on the surroundings, as well as losing heat to the surroundings?				
A) $q = -, w = -$	as losing near to the sum	oundings:		
B) $q = -, w = +$				
C) $q = +, w = +$				
D) $q = +, w = -$				
· •	present the system refere	nced above.		
5) For ΔE_{SVS} to always be –, what must be true?				
A) $+w > -q$		C) q = w	D) +q > -w	
6) Define heat capacity.				6)
		temperature of 1 mole of a su		
	-	emperature of 1 g of a substa	2	
	-	temperature of 1 gram of a su	-	
		temperature of 1 liter of a sul	ostance by 1°C	
E) the quantity of r	leat required to change a	system's temperature by 1°C		
7) Define specific heat capacity.				
A) the quantity of h	eat required to change a	system's temperature by 1°C		
B) the quantity of h	eat required to raise the t	emperature of 1 gram of a su	bstance by 1°C	
		temperature of 1 liter of a sul		
		temperature of 1 gram of a su		
E) the quantity of h	eat required to lower the	temperature of 1 mole of a su	ibstance by 1°C	
,	hermic reaction has the f	ollowing.		8)
A) + Δ H and - Δ E	B) – ΔH and – ΔE	C) + Δ H and + Δ E	D) – ΔH and + ΔE	

9) A 50.0-g sample of liquid water at 25.0°C is mixed with 29.0 g of water at 65.0°C. The final
 9) __________
 temperature of the water is ________°C.

10) The temperature rises from 25.00°C to 29.00°C in a bomb calorimeter when 3.50 g of sucrose undergoes combustion in a bomb calorimeter. Calculate ΔE_{rxn} for the combustion of sucrose in kJ/mol sucrose. The heat capacity of the calorimeter is 4.90 kJ/°C. The molar mass of sugar is 342.3 g/mol.

10) _____

11) Explain the difference between ΔH and ΔE (mathematically and conceptually)

11) _____

Answer Key Testname: QUIZ 6.1-6.6 (A), WITHOUT STOICHIOMETRY

1) C

2) A

3) A

4) A

5) B

6) E 7) B

7) D 8) C

9) 39.7

10) – 1.92 x 10³ kJ/mole

11) Change in enthalpy (Δ H) only tracks the exchange of heat between a system and its surroundings. Internal energy change (Δ E) tracks both heat and work exchanged between a system and its surroundings.