Name \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Given the following balanced equation, determine the rate of reaction with respect to $\left[\mathrm{SO}_{2}\right]$.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-2 \mathrm{SO}_{3}(\mathrm{~g})
$$

A) Rate $=+\frac{2 \Delta\left[\mathrm{SO}_{2}\right]}{\Delta \mathrm{t}}$
B) Rate $=-\frac{1}{2} \frac{\Delta\left[\mathrm{SO}_{2}\right]}{\Delta \mathrm{t}}$
C) Rate $=-\frac{\Delta\left[\mathrm{SO}_{2}\right]}{\Delta \mathrm{t}}$
D) Rate $=+\frac{1}{2} \frac{\Delta\left[\mathrm{SO}_{2}\right]}{\Delta \mathrm{t}}$
E) It is not possible to determine without more information.
2) Given the following rate law, how does the rate of reaction change if the concentration of Y is doubled?

$$
\text { Rate }=\mathrm{k}[\mathrm{X}][\mathrm{Y}]^{2}
$$

A) The rate of reaction will decrease by a factor of 2 .
B) The rate of reaction will increase by a factor of 2 .
C) The rate of reaction will increase by a factor of 5 .
D) The rate of reaction will increase by a factor of 4 .
E) The rate of reaction will remain unchanged.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
3) Write a balanced reaction for which the following rate relationships are true.

$$
\text { Rate }=-\frac{1}{2} \frac{\Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}=\frac{1}{4} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta \mathrm{t}}=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}}
$$

4) Determine the rate law and the value of k for the following reaction using the data provided.

$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{i}}(\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
0.093	4.84×10^{-4}	
0.084	4.37×10^{-4}	
	0.224	1.16×10^{-3}

5) Determine the rate law and the value of k for the following reaction using the data provided.

$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$	$[\mathrm{NO}]_{\mathrm{i}}(\mathrm{M})$	$\left[\mathrm{O}_{2}\right]_{\mathrm{i}}(\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
	0.030	0.0055	8.55×10^{-3}
	0.030	0.0110	1.71×10^{-2}
	0.060	0.0055	3.42×10^{-2}

6) What are the units of k in a zero order reaction?
7) What are the units of k in a second order reaction?
8) What is the overall order of the following reaction, given the rate law?

$$
2 X+3 Y \rightarrow 2 Z \quad \text { Rate }=k[X]^{1}[Y]^{2}
$$

9) The decomposition of dinitrogen pentoxide is described by the chemical equation $2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
If the rate of appearance of NO_{2} is equal to $0.560 \mathrm{~mol} / \mathrm{min}$ at a particular moment, what is the rate of appearance of O_{2} at that moment? (Conceptualize this)
10) What happens in the concentration of reactants and products during a chemical reaction?
11) What is the difference between average reaction rate and instantaneous reaction rate?
12) Explain how the order of a reaction can be determined.

Answer Key

Testname: QUIZ 13.1-13.3 KINETICS RATE LAWS

1) B
2) D
3) $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
4) Rate $=5.2 \times 10^{-3} \mathrm{~s}^{-1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$
5) Rate $=1.7 \times 10^{3} \mathrm{M}^{-2} \mathrm{~s}^{-1}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$
6) $\frac{M}{s}$
7) $\mathrm{M}^{-1} \mathrm{~S}^{-1}$
8) 3rd order
9) $0.140 \mathrm{~mol} / \mathrm{min}$
10) The concentration of reactants decrease and the concentration of products increase during a chemical reaction.
11) An average reaction rate is determined using long periods of time during the reaction. An instantaneous rate is found at a particular moment during reaction. Instantaneous rates usually decrease during the course of a reaction.
12) The order of a reaction can only be determined experimentally.
